
COS461 Precept 1
2/3/2022



Socket and Process Communication

The interface that the OS provides to its networking subsystem

application layerapplication layer

OS network
stack

User Process User Process

Socket

OS network
stack

Socket

Internet

Internet

2



transport layer (TCP/UDP)
network layer (IP)

link layer (e.g. ethernet)

Socket and Process Communication

The interface that the OS provides to its networking subsystem

application layer

transport layer (TCP/UDP)
network layer (IP)

link layer (e.g. ethernet)

application layer

User Process User Process

Internet

Internet

3



Socket and Process Communication
• Receiving host
• Destination address that 

uniquely identifies host
• IP address: 32-bit quantity 

(“1.2.3.4”)

• Receiving socket
• Host may be running many 

different processes
• Destination port that 

uniquely identifies socket
• Port number: 16-bits (“80”)

TCP/UDP

IP

Ethernet Adapter

Proces
s
A

Proces
s
Bport X port 

Y

Host 
Address

Protoco
l

Port 
Number

4



Socket and Process Communication

• Two types of Sockets:
• Stream Sockets: ‘Reliable’ TCP connections 

• Guarantees that the message sent will be delivered in the same order as they are sent.
• A connection is established between the two ends before message is sent

• Datagram Sockets: UDP Connections
• No guarantee on message delivery – maybe lost, may get reordered.
• Connectionless – The message is simply sent.

5



Socket Programming

• The idea of socket programming is to use the socket interface for 
communicating between processes/applications running across the 
network.
• You may want to download a file stored on a server. 
• You may want to create an application which to chat with your friends.

Let us look at socket programming briefly using C. The key ideas will remain 
same across different languages, only the syntax will differ.



Get the Address of the service/device you are trying to access/want to use : getaddrinfo



Problem: Create a program that receives messages over the network and act 
accordingly / create a SERVER

Lets think on what all we need to do :

Goal: To create a socket that can be used to listen to incoming connections.

1. Create a TCP socket.
2. Associate the socket with a PORT number.
3. Listen to incoming connections.
4. Accept incoming connections
5. Send a message to client/receive a message from client





Use getaddrinfo to collect information 
about our own IP.





Problem: Create a program that connects to another process / create a 
CLIENT

Lets think on what all we need to do :

Goal: To create a socket that can be used to listen to incoming messages

1. Create a TCP socket.
2. Associate the socket with a PORT number.
3. Connect to remote process.
4. Send a message to server/receive a message from server.



Use getaddrinfo to collect information 
about server IP.



Bind is not needed as we don’t intend to act as a listener for incoming 
connections and hence associating a fix port number is not necessary



Blocking calls vs Polling

accept and recv are both 
blocking calls, it means that at 
these calls the program halts 
and the control is transferred 
back to the OS. The OS returns 
to them when a new connection 
is available or new data is 
received.



Process 1

Socket1 Socket2 Socket3

Can receive on only one socket at a time

Solution?

Non-Blocking calls/polling 
based design

Idea: OS will collect the relevant events (e.g. received messages) in a queue and it is the programs 
responsibility to repeatedly check the queues and address the events.

Look at ‘Slightly Advanced 
Techniques’ in the Beej’s guide



How can sockets be used to communicate between two processes on the same machine? 


